Noise Removal from Surface Respiratory EMG Signal
نویسنده
چکیده
The aim of this study was to remove the two principal noises which disturb the surface electromyography signal (Diaphragm). These signals are the electrocardiogram ECG artefact and the power line interference artefact. The algorithm proposed focuses on a new Lean Mean Square (LMS) Widrow adaptive structure. These structures require a reference signal that is correlated with the noise contaminating the signal. The noise references are then extracted : first with a noise reference mathematically constructed using two different cosine functions; 50Hz (the fundamental) function and 150Hz (the first harmonic) function for the power line interference and second with a matching pursuit technique combined to an LMS structure for the ECG artefact estimation. The two removal procedures are attained without the use of supplementary electrodes. These techniques of filtering are validated on real records of surface diaphragm electromyography signal. The performance of the proposed methods was compared with already conducted research results. Keywords—Surface EMG, Adaptive, Matching Pursuit, Power line interference.
منابع مشابه
Corrigendum to: “Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique†published in J Biomed Phys Eng 2014; 4(1):31-38
متن کامل
Removing ECG Artifact from the Surface EMG Signal Using Adaptive Subtraction Technique
Background: The electrocardiogram artifact is a major contamination in the electromyogram signals when electromyogram signal is recorded from upper trunk muscles and because of that the contaminated electromyogram is not useful.Objective: Removing electrocardiogram contamination from electromyogram signals.Methods: In this paper, the clean electromyogram signal, electrocardiogram artifact and e...
متن کاملECG Artifact Removal from Surface EMG Signal Using an Automated Method Based on Wavelet-ICA
This study aims at proposing an efficient method for automated electrocardiography (ECG) artifact removal from surface electromyography (EMG) signals recorded from upper trunk muscles. Wavelet transform is applied to the simulated data set of corrupted surface EMG signals to create multidimensional signal. Afterward, independent component analysis (ICA) is used to separate ECG artifact componen...
متن کاملECG and power line noise removal from respiratory EMG signal using adaptive filters
Marzieh Golabbakhsh, Monire Masoumzadeh, Mohammad Farzan Sabahi 1Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Iran. Email: [email protected] 2Electrical and Computer Engineering Department of University of Isfahan, Isfahan, Iran. Email: [email protected] Received: July 2011 Revised: October 2011 Accepted: November 2011 ABSTRACT: Surface electrom...
متن کاملAn Android Application for Estimating Muscle Onset Latency using Surface EMG Signal
Background: Electromyography (EMG) signal processing and Muscle Onset Latency (MOL) are widely used in rehabilitation sciences and nerve conduction studies. The majority of existing software packages provided for estimating MOL via analyzing EMG signal are computerized, desktop based and not portable; therefore, experiments and signal analyzes using them should be completed locally. Moreover, a...
متن کامل